

PF-1010

PF - 1000 Series Single Jet Nozzles

Small tapered ADJUSTABLE CLEAR STREAM NOZZLE develops display with a minimum of distortions. Designed for precision use with spray ring, spray bards or other installations where precision vertical columns or trajectory patterns are desired.

Specification Data: Construction is of machined brass, cast bronze and cast brass with swivel adjustable connection

Model	BSP	Orifice				Stream	n Height i	n Meter		
Number	Conn.			1	1.5	2	2.5	3	3.5	4
PF-1008	1/8"	3mm	LPM	1.45	2.30	3.00	3.50	4.20	4.70	5.00
			Head in Mtr	1.35	2.00	2.70	3.35	4.00	4.70	5.35
PF-1009	1/4"	3mm	LPM	1.45	2.30	3.00	3.50	4.20	4.70	5.00
			Head in Mtr	1.35	2.00	2.70	3.50	4.20	4.70	5.00
PF-1010	3/8"	4.75mm	LPM	7.60	9.15	10.50	11.25	12.00	12.75	13.75
			Head in Mtr	1.35	2.00	2.70	3.35	4.00	4.70	5.35
PF-1011	1/2"	6.35mm	LPM	12.00	15.50	17.60	19.00	21.00	22.00	24.50
			Head in Mtr	1.35	2.00	2.70	3.35	4.00	4.70	5.35
PF-1012	3/4"	10mm	LPM	14.50	20.00	27.00	32.00	37.00	41.00	46.00
			Head in Mtr	1.35	2.00	2.70	3.35	4.00	4.70	5.35
PF-1013	1"	14mm	LPM	44.00	55.00	80.00	90.00	100.00	110.00	121.00
			Head in Mtr	1.35	2.00	2.70	3.35	4.00	4.70	5.35

Model	BSP	Orifice		Stream Height in Meter								
Number	Conn.			2	3	4	5	6	8	10	15	20
PF-1048	1 1/2"	19 mm	LPM	105	125	150	180	215	255	280		
			Head in Mtr	3	4	5	6.5	8	10	12.50	-	
PF-1050	3"	45 mm	LPM	555	675	875	990	1230	1500	1700	200	2275
			Head in Mtr	3	4	5	6.5	8	10	12.50	20	27
PF-1051	4"	55 mm	LPM	690	907	1123	1300	1684	2050	2300	2800	3200
			Head in Mtr	3	4	5	6.5	8	10	12.50	20	27

Sparkling unique tripe -tiered effect of clear streams. Ideal for small and medium sized displays. No constant water level is required.

Specification Data:

Cast bronze construction with Fix Jets removable cap for easy cleaning. Operating Data

 Noise : Low Visibility : Moderate Splash/Mist : Poor

Model	BSP	No. of	Orifice	Stream Height in Meter								
Number	Conn.	Jets			2	3	4	5	6	8	10	12
PF-1110	21/2"	19	1 @12mm	LPM	300	360	420	480	530	640	730	830
			18 @ 8mm	Head in Mtr	3	3	6.00	7.5	10	13	18	20

Model	BSP	No. of	Orifice			Strea	m Heig	Stream Height in Meter				
Number	Conn.	Jets			1	1.5	2	2.5	3	3.5	4	
PF-1101	1/2"	31	31@ 2.00mm	LPM	25	40						
				Head in Mtr	1.5	2.30			1			
PF-1102	1"	19	1@ 5.00	LPM	65	80	95	110	120	130	150	
			18@ 3.90mm	Head in Mtr	2.5	2.6	3.5	5.00	6.5	8.00	9.00	
PF-1103	1"	43	1@ 5.00mm	LPM	80	120	135	145	165	180	190	
			42 @ 2.80mm	Head in Mtr	3.00	3.5	4.00	6.00	9.00	10.00	11.50	
PF-1104	1"	26	1@ 5.00mm	LPM	100	120	135	150	165	175	190	
			25 @ 4.00 mm	Head in Mtr3.00	3.50	4.00	6.00	9.00	10.00	11.5	,	
PF-1105	1"	25	1@ 3.80mm	LPM	70	80	95	110	121			
Œ			24@ 3.20mm	Head in Mtr	2.40	2.60	3.65	6.00	6.87			
PF-1106	1"	15	15@ 4.75mm	LPM	65	70	80	100	120			
				Head in Mtr	2.74	3.04	3.65	4.20	4.87			
PF-1107	1 1/2"	25	1@ 6.40mm	LPM	100	120	135	150	165	185	190	
			24@ 4.75 mm	Head in Mtr	3.5	4.00	5.5	7.00	9.00	5.20	11.00	
PF-1108	2"	37	1 @ 5.00 mm	LPM	110	130	155	170	180	195	210	
			36@ 4.00MM	Head in Mtr	3.00	3.60	4.90	6.35	9.00	10.00	11.5	

PF-1102

PF-1107

PF - 3400 BP Series Foam Effect Nozzle (Water Level Dependent)

"Aquascape" FOAM GEYSER NOZZLES are designed to provide in their lowest spray heights white mounds of water. While at greater spray height to provide highly visible fluffy white spray effect. Foam Geyser nozzles are made of cast bronze with hard copper air snorkels.

D	E.	.2	1	6	

Model	BSP Conn	Jet Orifice		Spray	height in	meter						
				1.00	1.50	2	2.50	3	4	5	6	8
PF-3461	1.1/4"	32 mm	LPM	125	150	175	190	200	230			
			Head in Mtr	5.00	7.00	8.0	8.36	10.8	15			
PF-3462	1.1/2"	38 mm	LPM	175	205	231	258	281	337	380		
			Head in Mtr	5	7	8.4	11.6	17	21.1	23.5		:
PF-3463	2"	51 mm	LPM	265	305	337	364	383	432	473	515	1007
			Head in Mtr.	3.9	5.2	6.3	7.4	8.2	10	11.6	13.2	21

PF- 4000 Series Foam Effect Nozzle (Water Level Independent)

"Aguascape" AERATED JET NOZZLES are injection that is independent on the water level. Become of the injection effect the surrounding Air is sucked in, intensively mixed and thrown high into the Air by the injector jet Aerating, Jet Nozzles are designed to produce columns of highly aerated water with a frothy effected.

Model No.	BSP Con.	Jet Orifice		Spray height in meter						
				1	2	3	4	5	6	
PF-4001	1"	25 mm	LPM	40	55	70				
			Head in Mtr	6	8	10				
PF-4002	1 1/2"	40 mm	LPM	100	140	170	200		-	
			Head in Mtr	6	8	10	12			
PF-4003	2"	50mm	LPM	110	180	210	240	275	320	
			Head in Mtr	6	8	10	14	16	18	

PF- 1200 Series Rotating Nozzle

PARROT NOZZLES multi steam clear jet in animated swirling, spinning effect. Rotating is done without mechanical devices via water output from six-angled nozzle that turn with the vertical seventh center nozzle. Rotation, Speed and

Model No	BSP Con	Display Height	LPM	Head
		1	41.50	1
		1.25	50.00	2
PF-1201	1"	1.50	60.00	3
		1.75	70.00	4
		2.00	85.00	5
		2.50	100	6

display size are adjusted with the water control valve. The Pirouette offers an impressive dancing display with minimal water requirement.

PF-6400 Series Dandelion

The **DANDELION** Sphere effect is created by multiple discs of water at the radiating from a center manifold. These effects produce a fine spray that results evaporation cooling in the area of the effect. Construction is of cast bronze and precision machined brass.

Sphere

Model No.	BSP Conn.	No. of Arms	Sphere Dia	LPM	Head in Meter
PF-6441	2 1/2"	40	3'	450	10.00
PF-6443	2 1/2"	40	4'	500	10.00
PF-6445	4"	110	6'	1500	15.00

Hemisphere

Model No.	BSP Conn.	No. of Arms	Sphere Dia	LPM	Head in Meter
PF-6442	2 1/2"	35	3'	370	10.00
PF-6444	2 1/2"	40	4'	450	10.00
PF-6446	4"	70	6'	800	15.00

PF - 1100 Series Multi Jet Nozzles

FINGER JET NOZZLES produce a delicate, arching spray pattern using precision clear stream jets. Combined with a main swivel connection permits a wide range of spray patterns and angles. Due to the low noise and splash reduced, finger jets are ideal use in courtyard or entryway pools designed for close range viewing

Model Number	BSP Conn	No. of Jets	Orifice	Parabolic Length	Parabolic Height	Parabolic Width	LPM	Head Meter
PF-1130	1"	07	4mm	1.00m	0.12m	1.00 m	48	1.22
*				1.50 m	0.21 m	1.25 m	58	2.00
				2.00 m	0.30 m	1.50 m	65	2.50
PF-1130 SR	1 1/2"	13	4mm	1.00m	0.12 m	1.50m	78	1.00
				1.50m	0.21m	2.20 m	100	1.20
				2.00 m	0.30m	2.80m	117	1.60
				2.50 m	0.39m	3.40m	122	2.00
				3.00 m	0.50 m	3.60 m	130	2.50
PF-1130 DR	1 1/2"	19	4mm	1.00 m	0.25m	1.50m	114	1.00
				1.50 m	0.40 m	2.20m	152	1.20
				2.00 m	0.60 m	2.80m	170	1.60
				2.50 m	0.80 m	3.40m	180	2.00
				3.00 m	1.00 m	3.60m	190	2.50

PF-1130 SR

PF-1130 DR

PF - 1300 Series Water Film Nozzle

A clear of water in the shade of **BELL**. Minimum sound or splash. For silence wind-free locations in small and medium sized displays. Ideal in grouping of various heights. No constant water level required.

Model	BSP		Spray diameter (cm)						
Number	Conn.		15 cm	30 cm	45 cm	60 cm			
PF- 1301	1/2"	LPM	8	12	20	30			
		Head in Mtr	1	1	1	1			
PF- 1302	1"	LPM		15	22	35			
		Head in Mtr		1	1	1			

Water Lilv

Trace. L	,							
Model	BSP		ay height in meter					
Number	Conn.		0.25	0.50	0.75	1		
PF- 1308	1'	LPM	64	75	83	90		
		Head in Mtr	2	3	3.50	4		
		Dia.of Cone	0.25	0.50	0.75	1		

Fan Jet

Model	BSP	Spray		Spray	height i	n meter			
Number	Conn.	Angle		0.50	0.75	1.00	1.5	2	3
PF-1317	1"	45	LPM	60	80	90 150			-
			Head in Mtr	0.50	0.80	0.80	1.00	-	
PF-1318	1 1/2"	45	LPM	90	110	120	200	250	270
			Head in Mtr	0.50	0.80	0.80	1.00	1.20	1.80
		Vertical	LPM	170	200	250	350	400	500
			Head in Mtr	0.80	1.00	1.30	1.50	2.30	3.30

Sparkling unique tripe -tiered effect of clear streams. Ideal for small and medium sized displays. No constant water level is required.

Specification Data:

Cast bronze construction with Fix Jets removable cap for easy cleaning. Operating Data

 Noise 	: Low	
 Visibility 	: Moderate	
 Splash/Mist 	: Poor	
 Aeration Quality 	· Good	

Tulip

Model	BSP			Spray	height in	meter	
Number	Conn.		0.50	1.00	2.00	3.00	4.00
PF-1332	1 1/2"	LPM	50	80		-	
		Spread dia. mtr.	0.50	1.00	1.00		1
		Head in mtr.	3.00	5.00			
PF-1333	2 1/2" LPM			200	300	400	
		Spread dia. in mtr		1.00	2.50	4.00	
		Head in mtr		5.00	6.00	7.00	-
PF-1334	3"	LPM		300	400	500	600
		Spread		1.50	3.00	5.00	6.00
	i Fill	Head in mtr.		5.00	6.00	7.00	8.00

PF - 3400 Series Foam Effect Nozzle (Water Level Independent)

Spray height in meter

80

2.7

95

100

176

1.90

230

2.5

4

1.50 2

3.99

125

135

5.76

217

2.84

270

3.5

111

5.23

140

150

7.50

252

3.81

315

4.00

5.76 7.50

2.5

123

6.50

160

9.20

170

9.20

282

347

5.00

10.9

310

385

6.00

4.79 5.76

335

6.74

400

7.00

360

7.32

440

8.00

381

450

8.71 9.69

9.00 10.00

3.5

4.5

A column of Frothy, aerated water, Recommended for small and medium displays in shallow pools. Beautiful when lighted. Jet has low profile and neat appearance. No constant water level is required.

0.5

40

55

70

125

1.7

1.38

Head in Mtr

LPM

LPM

LPM

LPM

LPM

1.25

Specification Data:

BSP

Conn.

1/2"

1"

1"

1"

1 1/2"

2"

Model Number

PF-3401

PF-3402

PF-3403

Jet

Orifice

23 mm

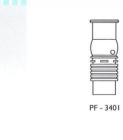
35mm

40mm

50mm

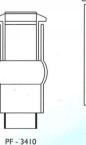
50 mm

Cast bronze and brass with internal air/water ration adjustment. Exterior is of Bronze.


PF-3402

PF-3403

100		
1		
The state of the s		
100		
1.00		
198		
189		
100		
and the same of		
MR 150		



PF - 3412

PF - 3400 Series Foam Effect Nozzle (Water Level Independent)

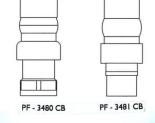
JET CLUSTER NOZZLES produces Vertical columns of water using connections rows of clear stream jet giving the appearance of large diameter water columns. Due to the refractive quality of the individual streams, jet cluster nozzles offer good visibility at the long range viewing distance. Applications include indoor or shielded out door use in commercial, institutional and municipal building and landscape projects, as primary displays features, or as peripheral accents to primary displays features they are also used effectively in series or grouped in cluster.

PF-3490

Model Number	BSP Conn	No. of Jets	Jet Orifice		Stream Height in Meter						
					0.50	1.00	1.50	2.00	2.50	3	
PF - 3490	1"	30	4.00mm	LPM	66	102	132	159	183	210	
				Head in Mtr	1.00	1.50	2.00	2.5	3.10	4.00	
PF - 3492	2"	50	4.00mm	LPM	110	170	220	265	305	345	
				Head in Mtr	1.00	1.50	2.00	3.00	3.25	3.70	

PF - 3400 CB Series Foam Effect Nozzle (Water Level Independent)

"Aquascape" 3400 series AERATING JETS are made of cast Bronze, Brass and stainless steel. The unique water level independent and Flow Adjustable Aerating Jets are for installation above water level the complete Jet has to be above water level.



PF-3481 CB

Model No	BSP Con.	Jet Orifice		Stream Height in Meter								
					1.00	1.50	2.00	2.5	3	4	5	6
PF - 3480 CB	1 1/2"	51mm	LPM	90	110	130	150	168	190	238	485	
			Head in Mtr	2.5	4.3	5.9	7.00	8.00	10.5	11.00	9.9	
PF - 3481	2"	76mm	LPM			270	310	350	380	445	485	530
			Head in Mtr			3.5	4.00	5.2	6.2	7.7	9.8	12.5

PF-3480 CB

PF - 3400 BP Series Foam Effect Nozzle (Water Level Dependent)

AERATING JET NOZZLES are designed to produce columns of highly aerated water with frothy effect. High light reflection characteristic of scream is ideal for lighted fountain. The aerating jets are made of cast bronze and brass and brass stock, machined to close tolerance. The inner nozzle has an internal tapered bore. Water and air suction ratio can be adjusted in this nozzle due to special design.

Model Number	BSP Conn.	Jet Orifice		Spray height in meter										
				1	2	3	4	5	8	10	15	20	30	
PF-3420	1"	32mm	LPM	25	29	34	41	52						
			Head in Mtr	4	6	8	11	18						
PF-3421	1 1/2"	52 mm	LPM	38	44	60	82	97	121	130				
			Head in Mtr	4	6	7	9	11	16	18				
PF-3422	2"	65mm	LPM	-2	118	141	165	180	230	250	290			
			Head in Mtr		4	6	7	11	16	18	22			
PF-3423	2 1/2"	76mm	LPM		200	260	310	340	440	510	630	730		
			Head in Mtr		9	11	12	14	17	20	28	37		
PF-3424	3"	90mm	LPM		320	380	415	470	570	620	750	850	1050	
			Head in Mtr		9	11	12	14	18	22	32	41	60	

PF - 3400 Series Foam Effect Nozzle (Water Level Dependent)

CASCADE NOZZLES produce a graceful conical shaped while display. The water level dependent aerated display is suitable for clam to light wind conditions. Exhibits excellent light reflecting properties.

Specification Data:

Constructed of machined cast bronze natural finish.

Model	BSP	Nozzle length	Jet Orifice		Spray height in meter									
Number	Conn.				1	2	3	4	5	6	8	10	12	
PF-3450	1"	152 mm (6")	50 mm	LPM	100	131	153	174						
<u> </u>				Head in Mtr	8	14	20	24						
PF-3451	1.1/2"	228 mm (9")	70 mm	LPM	122	160	190	224			el .			
				Head in Mtr	6.60	12.60	16	23						
PF-3452	2"	254 mm(10")	90 mm	LPM	194	320	380	420	467	489	570	720		
				Head in Mtr	7	9	13	19	23	26	33	39		
PF-3453	3"	335 mm(14")	150 mm	LPM	333	560	645	743	844	930	1132	1390	1552	
				Head in Mtr	6	8	10	14	17	20	34	40	57	

